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What Did We Cover?

I Using Dakota
I Dakota command line usage
I Interfacing your simulation program

I Text based input and output files

I Sensitivity Analysis
I Centered Parameter Study
I Sampling Study

I Latin hypercue sampling (LHS)
I Variance Based Decomposition

I Direct approach
I Surrogate model

I Surrogate Models
I Polynomial Chaos Expansion



What Did We Cover? (continued)

I Uncertainty Quantification
I Describing uncertainty using probability distribution functions

I Uncertainty Propagation
I Sampling
I Variance Based Decomposition



Many Methods in One Tool 
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Sensitivity Analysis 
• Designs: MC/LHS, DACE, sparse 

grid, one-at-a-time 
• Analysis: correlations, scatter, 

Morris effects, Sobol indices 

Uncertainty Quantification 
• MC/LHS/Adaptive Sampling 
• Reliability 
• Stochastic expansions 
• Epistemic methods 

Optimization 
• Gradient-based local 
• Derivative-free local 
• Global/heuristics 
• Surrogate-based 

Calibration 
• Tailored gradient-based 
• Use any optimizer 
• Bayesian inference 

Interface Dakota to your simulation once, then apply various 
algorithms depending on your goal…  

http://dakota.sandia.gov/
http://www.sandia.gov/


How related tools compare to Dakota 

Software Methods Simulation 
Interface 

Hybrid 
Analyses R&D Parallel 

Computing 
NASA UQTools UQ ??? no no ??? 
OpenTURNS UQ ??? no no no 
LLNL PSUADE SA yes no no ??? 
MIT MUQ UQ, Opt custom no yes no 
SNL UQTk UQ, Cal yes no yes no 
OpenMDAO Opt yes no yes yes 
COIN-OR Opt no no yes some 
NLOpt Opt yes no no no 
Nessus UQ yes no ??? no 
GoldSim UQ ??? no ??? no 
PEST Cal yes no ??? yes 
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http://dakota.sandia.gov/
http://www.sandia.gov/


Other SA Approaches Typically Only  
Require Changing the Method Block 

 Dakota Reference Manual guides in specifying keywords 

method,              
sampling          
    sample_type lhs         
    seed = 52983         
    samples = 100         

method,              
sampling          
    sample_type lhs         
    seed = 52983         
    samples = 500 
    variance_based_decomp       

method,              
    dace oas 
    main_effects 
    seed = 52983         
    samples = 500 

method,              
    psuade_moat 
    partitions = 3 
    seed = 52983 
    samples = 100 

LHS Sampling  

Variance-based Decomposition 
using LHS Sampling  

Main Effects Analysis using  
Orthogonal Arrays 

Morris One-at-a-Time 
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Parameter 
studies 

centered, vector, list P 
grid D P 

Sampling sampling, dace lhs, dace random, 
fsu_quasi_mc, fsu_cvt 
  with variance_based_decomp... 

P D 

D 
DACE (DOE-
like) 

dace {oas, oa_lhs, box_behnken,  
central_composite} D D 

MOAT psuade_moat D 

PCE, SC polynomial_chaos, stoch_collocation D D 

Mean value local_reliability D 

Dakota SA Methods Summary 

also multi- 
purpose! 

D: Dakota-generated 
P: Post-processing required 
 (3rd party tools) 
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Guide to Optimization Methods 
See Usage Guidelines in User’s Manual 
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Gradient-Based 
Local (smooth) 

optpp_cg x 
dot_bfgs, dot_frcg, conmin_frcg x x 
npsol_sqp, nlpql_sqp, dot_mmfd, dot_slp, dot_sqp, 
conmin_mfd, optpp_newton, optpp_q_newton, 
optpp_fd_newton 

x x x 

Gradient-Based  
Global (smooth) 

hybrid, multi_start x x x 

Derivative-Free 
Local 
(nonsmooth) 

optpp_pds x x 
coliny_cobyla, coliny_pattern_search, 
coliny_solis_wets, surrogate_based_local x x x 

asynch_pattern_search, mesh_adaptive_search x x x x 

Derivative-Free 
Global 
(nonsmooth) 

ncsu_direct, genie_direct, genie_opt_darts x x 
coliny_direct, efficient_global, 
surrogate_based_global x x x 

coliny_ea, soga, moga (multiobjective) x x x x 

For multi-objective problems: use weighted sum with any method, pareto_set, or moga. 



Guide to Optimization Methods 
See Usage Guidelines in User’s Manual 
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Gradient-Based 
Local (smooth) 

optpp_cg x 
dot_bfgs, dot_frcg, conmin_frcg x x 
npsol_sqp, nlpql_sqp, dot_mmfd, dot_slp, dot_sqp, 
conmin_mfd, optpp_newton, optpp_q_newton, 
optpp_fd_newton 

x x x 

Gradient-Based  
Global (smooth) 

hybrid, multi_start x x x 

Derivative-Free 
Local 
(nonsmooth) 

optpp_pds x x 
coliny_cobyla, coliny_pattern_search, 
coliny_solis_wets, surrogate_based_local x x x 

asynch_pattern_search, mesh_adaptive_search x x x x 

Derivative-Free 
Global 
(nonsmooth) 

ncsu_direct, genie_direct, genie_opt_darts x x 
coliny_direct, efficient_global, 
surrogate_based_global x x x 

coliny_ea, soga, moga (multiobjective) x x x x 

For multi-objective problems: use weighted sum with any method, pareto_set, or moga. 



Guide to Calibration Methods 
See Usage Guidelines in User’s Manual 
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Gradient-
Based Local 
(smooth) 

optpp_cg x 
nl2sol dot_bfgs, dot_frcg, conmin_frcg x x 
nlssol_sqp, 
optpp_g_newton 

npsol_sqp, nlpql_sqp, dot_mmfd, dot_slp, 
dot_sqp, conmin_mfd, optpp_newton, 
optpp_q_newton, optpp_fd_newton 

x x x 

Gradient-
Based  
Global 
(smooth) 

hybrid*, 
multi_start* 

hybrid, multi_start 

x x x 

Derivative-
Free Local 
(nonsmooth) 

optpp_pds x x 
surrogate_ 
based_local* 

coliny_cobyla, coliny_pattern_search, 
coliny_solis_wets x x x 

asynch_pattern_search, mesh_adaptive_search x x x x 

Derivative-
Free 
Global 
(nonsmooth) 

ncsu_direct, genie_direct, genie_opt_darts x x 
coliny_direct, efficient_global, 
surrogate_based_global x x x 

coliny_ea, soga x x x x 

*: in conjunction with a specialized gradient-based method (nl2sol, nlssol, optpp_g_newton) 

http://dakota.sandia.gov/
http://www.sandia.gov/


Dakota UQ Methods Summary 

character method class problem character variants 
aleatory probabilistic sampling nonsmooth, multimodal, 

modest cost, # variables 
Monte Carlo, LHS, 
importance 

local reliability smooth, unimodal, more 
variables, failure modes 

mean value and MPP, 
FORM/SORM,  

global reliability nonsmooth, multimodal, 
low dimensional 

EGRA 

stochastic expansions nonsmooth, multimodal, 
low dimension 

polynomial chaos, 
stochastic collocation 

epistemic interval estimation simple intervals global/local optim, sampling 
evidence theory belief structures global/local evidence 

both nested UQ mixed aleatory / epistemic nested 

Also see Usage Guidelines in User’s Manual 
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