

Exceptional service in the national interest

Dakota Software Training

Sensitivity Analysis

http://dakota.sandia.gov

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Module Learning Goals

- Understand goals and benefits of sensitivity analysis (SA)
- Have a practical process for SA at your disposal
- Be able to formulate your problem, present it to Dakota, and run and understand studies
- Be familiar with key Dakota sensitivity analysis methods
- Know how to use Dakota SA results

Module Outline

- Introduction and motivating application examples
- Sensitivity analysis process, terminology, and Dakota input details
- Centered parameter studies (now for sensitivity analysis)
- Monte Carlo sampling
- Exercise: Determine influential parameters for cantilever
- Other key SA methods: Morris one-at-a-time (MOAT) and variance-based decomposition (VBD)
- Exercise: Explore sensitivity analysis methods
- Beyond Dakota: using SA results, getting more information

Why Sensitivity Analysis?

- What? Reveal the extent to which simulation outputs depend on each simulation input
- Why? Identify most important input variables and their interactions
 - Primarily for screening/ranking: Identify the most important variables; down-select for further uncertainty or optimization analysis
 - Provide a focus for resources
 - Data gathering and model development
 - Code development
 - Uncertainty characterization
 - Identify key model characteristics: smoothness, nonlinear trends, robustness; develop intuition about the model
- Related
 - Can have the side effect of identifying code and model issues
 - Generated simulation data can be used to construct surrogate models

Sensitivity Analysis Example: Earth Penetrator

Notional model for illustration purposes only (http://www.sandia.gov/ASC/library/fullsize/penetrator.html)

12 parameters describing target & threat

threat: width, length

target: soil depth, structure width (span)

- Underground target with external threat: assess sensitivity in target response to target construction and threat characteristics
- Response: angular rotation (φ) of target roof at mid-span
- Analysis: CTH Eulerian shock physics code; JMP for stats
- Revealed most sensitive input parameters and nonlinear relationships

Sensitivity Analysis Example: Nuclear Reactor Thermal-Hydraulics Model

- Assess parameter influence on boiling rate, a key crud predictor
- Dakota correlation coefficients: strong influence of core operating parameters (pressure is more important than previously thought)
- Dittus-Bolter correlation model may dominate model form sensitivities (also nonlinear effects of ExpPBM)
- Scatter plots help visualize trend in input/output relationships

parameter influence on number of boiling sites

sensitivity of (max) mass evaporation rate to operating parameters

Discussion:

Your Sensitivity Analysis Practice

- What kinds of parameters (broadly) are important in your science and engineering computational models?
- What SA questions do (might) you ask with these models?
- How do (might) you answer them?
- What measures of sensitivity, ranking, or importance are you familiar with?
- What challenges do you face?

A Practical Process for SA

- 1. What are the key model responses (quantities of interest)? What are your follow-on (post-SA) analysis goals?
- 2. Identify potentially important input parameters
 - Often expert opinion-based with phenomena identification and ranking table (PIRT)
 - Include parameters that likely influence response or might be involved in other studies
- 3. Pose plausible parameter bounds or steps
- 4. Set up Dakota input file with variables and interface to simulation
- 5. Perform an initial centered parameter study
- 6. Perform additional SA studies based on simulation cost and any known model character
- 7. Post-process Dakota-generated data with third-party tools

Up next: Some sensitivity analysis terminology

Key Sensitivity Analysis Concepts: Local Sensitivity

- Local sensitivity measures the relative influence of parameters at a particular point in the input space
- Partial derivatives (slopes) w.r.t. each variable: $\frac{\partial f}{\partial x_1}(x^*)$, $\frac{\partial f}{\partial x_2}(x^*)$
- Can be estimated with finite differences (small perturbations);
 with Dakota via centered parameter study or numerical gradients
- Some simulation codes can compute these directly, e.g., via adjoints

Key Sensitivity Analysis Concepts: Global Sensitivity

- Global sensitivity assesses the relative influence of parameters over the entire input space (typically a hyper-rectangle)
- What is the general trend of the response over all values of x? Does the response depend more nonlinearly on one factor than another?
- How? Evaluate the response at well-distributed points x^j in the input space (a design of computer experiments) and analyze the resulting input/output pairs $\{x^j, f(x^j)\}$
- Dakota (and this training) primarily focus on global SA

Key Sensitivity Analysis Concepts: Measures of Sensitivity

- Correlation coefficient (Pearson) ρ : strength and direction of the linear relationship between two variables (input to output); $\rho \in [-1,1]$
 - Also partial correlation (controls for other variables)
 - Spearman rank correlation: helpful for variables or responses varying over orders
- Main effect: effect of a single variable, averaging over the effects of the other variables
- Sobol indices: measure of output variance attributable to each input variable: first-order/main effect and total effect
- Morris metrics: statistics on elementary effects which measure variability of response at various points in input space: main and nonlinear/interaction measures
- Scatter plots: helpful visual diagnostic for trend analysis

A Practical Process for SA

- 1. What are the key model responses (quantities of interest)? What are your follow-on (post-SA) analysis goals?
- 2. Identify potentially important input parameters
 - Often expert opinion-based with phenomena identification and ranking table (PIRT)
 - Include parameters that likely influence response or might be involved in other studies
- 3. Pose plausible parameter bounds or steps
- 4. Set up Dakota input file with variables and interface to simulation
- 5. Perform an initial centered parameter study
- Perform additional SA studies based on simulation cost and any known model character
- 7. Post-process Dakota-generated data with third-party tools

Up next: Discuss 3, 4, and 5

First, how might we pose bounds or increments for non-physical parameters?

Specifying Dakota Variable Ranges for a Sensitivity Study

Local or univariate global sensitivity: initial point and steps to take

```
variables
  continuous_design 2
   descriptors 'power' 'expPBM'
   initial_point 1.0 2.0

method centered_parameter_study
  steps_per_variable 5 2
  step_vector 0.1 0.5
```


Global sensitivity: hyper-rectangle bounds

```
variables
continuous_design 2
descriptors 'flow' 'power'
upper_bounds 1.5 3.0
lower_bounds 0.5 1.0

method sampling
...
```


Dakota variable type is not critical. Typically use continuous or discrete design, or uniform or discrete (interval, set) uncertain.

Centered Parameter Study for Univariate Sensitivity

- Exercise 1: Run a centered parameter study similar to that in the Model Characterization module (see exercises/sens_analysis/1)
- Requires $2 \times d \times steps + 1$ runs
- Similar to perturbation studies you probably already do when learning about a model: change parameters ±5%, ±10%, etc.

- How do we interpret this study for SA purposes?
 - Overall range of variability
 - Nonlinear effects
 - Relative influence
 - (Helps to plot the tabular data overlaid to compare)
- What would you conclude from the plots at right?

A Practical Process for SA

- 1. What are the key model responses (quantities of interest)? What are your follow-on (post-SA) analysis goals?
- 2. Identify potentially important input parameters
 - Often expert opinion-based with phenomena identification and ranking table (PIRT)
 - Include parameters that likely influence response or might be involved in other studies
- 3. Pose plausible parameter bounds or steps
- 4. Set up Dakota input file with variables and interface to simulation
- 5. Perform an initial centered parameter study
- Perform additional SA studies based on simulation cost and any known model character
- 7. Post-process Dakota-generated data with third-party tools

Up next: 6

Workhorse SA Method: Random Sampling

- Dakota generates a space filling design (most commonly a Latin hypercube design) and runs model at each point
- Recommend $10 \times d$ model runs (samples), minimum $2 \times d$
- Analyzes input/output relationships with correlation coefficients
 - Simple correlation: strength and direction of a linear relationship between variables
 - Partial correlation: like simple correlation but adjusts for the effects of the other variables
 - Rank correlations: simple and partial correlations performed on "rank" of data
- Can use for follow-on analysis, such as PCE + VBD with Dakota, or with thirdparty tools

Two-dimensional projections of a LHD for Cantilever (plotted with Minitab)

$$\rho(w,z) = \frac{\sum_{i} (w^{i} - \overline{w})(z^{i} - \overline{z})}{\sqrt{\sum_{i} (w^{i} - \overline{w})^{2}(z^{i} - \overline{z})^{2}}}$$

Simple correlation between factors (input or output) w and z, taken over samples i

Exercise 2: Random Sampling for SA

- Use the Reference Manual to change the Dakota input file in exercises/sens_analysis/2 from a centered study to sampling
 - Configure the sampling method to perform a Latin hypercube sample with an appropriate number of samples. Why might a seed specification be important?
 - Use uniform_uncertain variables to define the hyper-rectangle given by $0.5 \leq w \leq 1.5 \qquad 0.5 \leq t \leq 1.5 \qquad 5.0 \leq L \leq 15.0 \qquad 450.0 \leq \rho \leq 550.0$ $2.4e+7 \leq E \leq 3.4e+7 \qquad 1.0 \leq X \leq 10.0 \qquad 5.0 \leq Y \leq 15.0$
- Run the study and examine the correlations between inputs and outputs
 - Which parameters most influence mass? Stress? Displacement?
 - How does changing the number of samples affect your conclusions?
 - Do these match your intuition of the cantilever beam analysis? *Recall that Cantilever Physics simulates following simple model...*

$$M = \rho * wt * \frac{L}{12^3}$$

$$S = \frac{600}{wt^2} Y + \frac{600}{w^2 t} X$$

$$D = \frac{4L^3}{Ewt} \sqrt{\left(\frac{Y}{t^2}\right)^2 + \left(\frac{X}{w^2}\right)^2}$$

Global Sampling Results for Cantilever

Partial Correlation Matrix for Cantilever									
	mass	stress	displacement						
w	0.95	-0.96	-0.78						
t	0.95	-0.97	-0.90						
L	0.96	-0.17	0.91						
р	0.95	0.11	0.14						
E	-0.08	-0.13	-0.68						
Х	-0.03	0.54	0.05						
Υ	0.12	0.82	0.44						

partial correlations from console output (colored w/ Excel)

Scatter plots: Dakota tabular data plotted in Minitab (can use Matlab, JMP, Excel, etc.)

Observation: Correlations

- Large correlation coefficients indicate important factors, however factors with small correlation may still be significant
- Assumptions about input domain (bounds) matter
- Diagnostics like scatter plots can help avoid pitfalls

Example: function with a quartic-like trend over two different domains

Bounds = [-1, 3]

Bounds = [1, 3]

Additional SA Methods: Variance-based Decomposition (VBD)

VBD assumes an orthogonal decomposition of the response

$$f(x) = f_0 + \sum_{i} f_i(x_i) + \sum_{i < j} f_{ij}(x_i, x_j) + \cdots$$

 Sensitivity indices summarize how response variability can be apportioned to individual input factors.

$$S_i = \frac{Var_{x_i}[E(f|x_i)]}{Var(f)} \qquad T_i = \frac{E_{x_{-i}}[Var(f|x_{-i})]}{Var(f)} = \frac{Var(f) - Var_{x_{-i}}[E(f|x_{-i})]}{Var(f)}$$

Main effect S_i measures effect of varying x_i alone (averaging over other factors). Total effect T_i includes its interactions with other variables.

- Directly enabling this for a sampling or DOE method is often prohibitively expensive, requiring $(d+2) \times N$ runs, where each replicate has N samples
- Instead, configure Dakota to automatically build a polynomial chaos expansion (PCE) from the earlier Latin hypercube sampling dataset and compute main and total effects analytically

Additional SA Methods: Morris One-at-a-Time (MOAT)

- Conduct "tours" (sampling on coordinate direction paths) around the global space x.
- For each step j in coordinate direction i, compute an elementary effect: $\delta_i(x^j) = \frac{f(x^j + \Delta e_i) f(x^j)}{\Delta}$ (like a forward difference local sensitivity, but with large step)
- Compute statistics on the elementary effects to assess relative influence of each variable i over whole space
 - Mean μ_i : measure of linear/main/first-order effect
 - Modified mean μ_i^* : same, controlling for cancellation
 - Standard deviation σ_i : measure of variability across input space; indicative of interaction and/or nonlinear effects
- Number samples must be a multiple of (d+1); recommend 2x(d+1) to 10x(d+1)

$$\mu_i = \frac{1}{N_j} \sum_j \delta_i(x^j)$$

$$\mu_i^* = \frac{1}{N_j} \sum_{i} |\delta_i(x^j)|$$

$$\sigma_i = \sqrt{\frac{1}{N_j - 1} \sum_j \left(\delta_i(x^j) - \mu_i\right)^2}$$

Other SA Approaches Typically Only Require Changing the Method Block

Dakota Reference Manual guides in specifying keywords

```
method,
sampling
   sample_type lhs
   seed = 52983
   samples = 100
```

LHS Sampling

```
method,
sampling
    sample_type lhs
    seed = 52983
    samples = 500
    variance_based_decomp
```

Variance-based Decomposition using LHS Sampling

```
method,
   dace oas
   main_effects
   seed = 52983
   samples = 500
```

Main Effects Analysis using Orthogonal Arrays

```
method,
    psuade_moat
    partitions = 3
    seed = 52983
    samples = 100
```

Morris One-at-a-Time

Dakota SA Methods Summary

Category	Dakota method names	univariate trends	correlations	modified mean, s.d.	main effects Sobol inds.	importance factors / local sensis
Parameter	centered, vector, list	Р				
studies	grid		D		Р	
Sampling	sampling, dace lhs, dace random, fsu_quasi_mc, fsu_cvt with variance_based_decomp	Р	D		D	
DACE (DOE- like)	dace {oas, oa_lhs, box_behnken, central_composite}		D		D	
MOAT	psuade_moat			D		
PCE, SC	polynomial_chaos, stoch_collocation				D	D
Mean value	local_reliability					D

also multipurpose!

D: Dakota-generated

P: Post-processing required (3rd party tools)

Exercise 3: VBD and MOAT

See exercises/sens_analysis/3

- Morris One-at-a-Time
 - Copy dakota_cantilever_lhs.in from 2/to 3/
 - Modify the method to perform a Morris sampling study; note that samples must be a multiple of d+1
 - Run the study and examine the modified mean and standard deviation of the elementary effects
- Variance-based decomposition with PCE, reusing data from LHS study
 - Copy your tabular data file from 2/ to 3/
 - Insert the variables specification into dakota_cantilver_pce_vbd.in
 - Run the study and examine the Sobol indices (main and total effects)
- For each, what do you conclude?
- How might you plot or otherwise analyze/present the results?

Results from Additional SA Methods

Sobol indices from VBD (for stress):

Main	
3.3760829131e-01	
4.6020857475e-01	
0.000000000e+00	
0.000000000e+00	
0.000000000e+00	
3.7319366458e-02	
5.0936411844e-02	

Total	
4.2345004119e-01	W
5.4707791944e-01	t
2.1120750926e-03	L
4.1405847238e-03	р
6.8909143306e-04	E
6.0826370499e-02	X
7 56212722520 02	7.7

Morris metrics

A Practical Process for SA

- 1. What are the key model responses (quantities of interest)? What are your follow-on (post-SA) analysis goals?
- 2. Identify potentially important input parameters
 - Often expert opinion-based with phenomena identification and ranking table (PIRT)
 - Include parameters that likely influence response or might be involved in other studies
- 3. Pose plausible parameter bounds or steps
- 4. Set up Dakota input file with variables and interface to simulation
- 5. Perform an initial centered parameter study
- Perform additional SA studies based on simulation cost and any known model character
- 7. Post-process Dakota-generated data with third-party tools

Up next: Discuss 7

Using Dakota-generated Data

- Users commonly work with the Dakota tabular data file (dakota_tabular.dat by default)
- Import tabular data into Excel, Minitab, Matlab, R, SPlus, JMP, Python to
 - Generate scatter or residual plots to assess trends missed by correlations
 - Perform stepwise or best subsets regression
 - Perform other significance analysis
- Use Dakota results to prune variables and repeat study with more samples
- Decision making considerations
 - Can you gather more data on most influential parameters?
 - Can you afford optimization or UQ using all the influential parameters?

Common Question: Uncertainty Quantification versus SA

What distinguishes sensitivity analysis from uncertainty analysis?

- With SA you primarily gain information about variables
 - Rank importance of parameters and characterize in what way they influence responses
 - Sometimes called inverse UQ
 - Secondarily, characterize model properties
- With UQ you primarily gain information about responses
 - Statistical properties of output responses
 - Intervals indicating bounds on response
 - Likelihood (probability of failure)
- Some methods can be used for both, e.g.,
 - LHS is often used for SA (correlations) and UQ (moments, PDFs, CDFs)
 - Polynomial chaos expansions (PCE) thought of as a UQ method, but also efficiently produce Sobol indices for ranking parameter influence

Sensitivity Analysis References

- Saltelli A., Ratto M., Andres T., Campolongo, F., et al., Global Sensitivity Analysis:
 The Primer, Wiley, 2008.
- J. C. Helton and F. J. Davis. Sampling-based methods for uncertainty and sensitivity analysis. Technical Report SAND99-2240, Sandia National Laboratories, Albuquerque, NM, 2000.
- Oakley, J. and O'Hagan, A. Probabilistic sensitivity analysis of complex models: a Bayesian approach. J Royal Stat Soc B 2004; 66:751–769.
- Dakota User's Manual
 - Parameter Study Capabilities
 - Design of Experiments Capabilities/Sensitivity Analysis
 - Uncertainty Quantification Capabilities (for MC/LHS sampling)
- Corresponding Reference Manual sections

Sensitivity Analysis: Recommended Practice Summary

- Conduct an initial centered parameter study, requiring $2 \times d \times steps + 1$ runs, ideally with small, then large perturbations
 - Only univariate effects: can't get interactions, however results aren't confounded
- Conduct a global sampling design with from $2 \times d$ to $10 \times d$ samples
 - Input/output pairs with large (> 0.7) simple or partial correlations are significant
 - Smaller ones may still be relevant; to find out, generate scatter plots, analyze same data set using PCE with VBD
- Alternately, or in addition for comparison, conduct a MOAT study to get results similar to VBD
 - From $2 \times d$ to $10 \times d$ samples
- Use third-party tools as needed to generate additional views or conduct analyses

Module Learning Goals Did We Meet Them?

- ✓ Understand goals and benefits of sensitivity analysis (SA)
- ✓ Have a practical process for SA at your disposal
- ✓ Be able to formulate your problem, present it to Dakota, and run and understand studies
- ✓ Be familiar with key Dakota SA methods
- ✓ Know how to use Dakota sensitivity analysis results