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Familiarize Yourself with Key Statistics Ideas: &
Moments of Random Variables ) e

Understanding the following basic concepts will help with Dakota UQ

= Concept of a random variable X

realizations of random variables
with mean u=100, standard
deviation 0=10, 0=50
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= Mean (m, u): expected or average
value of X, e.g., mean of sample of

size N: 1 ¢ : q
Uy =— ZT (u') 21 342 0701 0 o 31 e e
N &

[ | 1241 .
Stan.dard fiewatlor.\ (S{ ,O) - measure In the earlier MEMS application, the
of dispersion / variability of X: manufactured edge has a
1 N : > mean bias of -0.2 um, with
o \/W; [T ()= ﬂfr] standard deviation 0.08 um:
s < l g 4 edge bias
-0.36 -0.28 -0.2 -0.12 -0.04
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Familiarize Yourself with Key Statistics Ideas: &
PDFs, CDFs, Intervals i i,
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Understanding the following basic concepts will help with Dakota UQ
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= Probability density / probability o

H=0, ¢'=0,
M=0, ¢'=10,
p=0, @'=5

mass function: relative likelihood i o I
of a given value of X 0-2] ‘
A
. o ) ‘ probability
" Cumulative distribution function: mass function

probability that X will take on a WS

e o Zal
value less than or equal to x: :1;:;;::;:/ j/
P(X<x) 3. [ 1 cgmglatl ve

) Z W / distribution

LA 1 functions

= |nterval-valued uncertainty: X can

take on any value in the interval For the earlier thermal application,
a PDF or CDF can answer questions

about the probability of exceeding a
critical temperature.

[a,b], but no probability or
likelihood of one value vs. another




Categories of Uncertainty

This distinction can help in selecting Dakota variable types and method

= Aleatory (think probability density function, frequency; sufficient data)

= |nherent variability (e.g., in a population), type-A, stochastic
= Irreducible: further knowledge won’t help
= |deally simulation would incorporate this variability
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= Epistemic (e.g., bounded intervals, distribution with uncertain parameters)

= Subjective, type-B, state of knowledge uncertainty
= Reducible: more data or information, would [

make uncertainty estimation more precise [

= Fixed value in simulation, e.g., elastic [

modulus, but not well known for this material [

See separate course on motivation for aleatory vs. epistemic uncertainty




Characterizing Uncertainties to Dakota &

Sandia
|I1 National
|ahoratories

= Must characterize each variable’s uncertainty and (optionally) any
correlation between pairs of variables. Need not be normal (or uniform)!

= May require processing data with math/stats tool to fit distributions,
performing literature searches, or querying experts
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= Aleatory continuous: normal, lognormal, uniform, loguniform, triangular,
exponential, beta, gamma, Gumbel, Frechet, Weibull, histogram

q:'.lr.a-‘(x)

L n L 1
5 -4 =3 =2

Dakota uncertain variable types:

= Aleatory discrete: Poisson, binomial, negative binomial, hypergeometric,
histogram point (integer, real, string)

=  Epistemic: continuous interval, discrete interval, discrete set




Specifying Dakota Uncertain Variables &
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variables
normal_uncertain 1

= UQ problems are specified to

. . ] descriptors 'density’
Dakota using uncertain variables neans g 1
(keywords *_uncertain) std_deviations 1.7
. ] lognormal _uncertain 1
= Typically generic response descriptors ‘specific_heat"
functions are used means 2.7

error_factors 1.1
poisson_uncertain
descriptors 'fire_strength'

= Thermal UQ example: here is a

lambdas 1.5
pOSSIble Dakota Input file fragment histogram_bin_uncertain 1
for the uncertain variable types descriptors 'foam thickness'
. . num_pairs 4
shown on the previous slide abscissas 2.5 3.8 3.5 4.8
counts 15 11 20 ©
=  See the Reference Manual responses

response_functions 2

variables section for all variable
types and their parameters

descriptors 'pressure' 'temperature’



https://dakota.sandia.gov/sites/default/files/docs/6.3/html-ref/variables.html
https://dakota.sandia.gov/sites/default/files/docs/6.3/html-ref/variables.html

Stochastic Expansions:
What Are They?

= General-purpose UQ methods that build UQ-tailored
polynomial approximations of the output responses

=  Perform particularly well for smooth model responses

= Resulting convergence of statistics can be
considerably faster than sampling methods

= Need to specify the Dakota method:

= Polynomial Chaos (polynomial_chaos): specify the type of
orthogonal polynomials and coefficient estimation scheme,
e.g., sparse grid or linear regression.

= Stochastic Collocation (stoch_collocation): specify the type of
polynomial basis and the points at which the response will be
interpolated; supports piecewise local basis
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Cubic Polynomial Surrogate
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Polynomial Chaos: —

How Does It Work? ) e,
aboratories
= Uses an orthogonal polynomial basis ¢;(u), e.g., i e
Wiener-Askey basis, with Hermite polynomials T 4

H L)

orthogonal w.r.t. normal density, Legendre
polynomials orthogonal w.r.t. uniform density

= Evaluates the model in a strategic way
(sampling, quadrature, sparse grids, cubature)...

= ..to efficiently approximate the coefficients of Hermite Polynomials
an orthogonal polynomial approximation of the

response fw) =pu) = z cipi(u)

l

= And analytically calculates statistics from the
approximation instead of approximating the (500 S S s B
statistics with MC samples

Sparse Grid




Dakota UQ Methods Summary &

character | method class problem character variants

aleatory probabilistic sampling nonsmooth, multimodal,
modest cost, # variables

local reliability smooth, unimodal, more
variables, failure modes

global reliability nonsmooth, multimodal,
low dimensional

stochastic expansions nonsmooth, multimodal,
low dimension

epistemic interval estimation simple intervals
evidence theory belief structures
both nested UQ mixed aleatory / epistemic
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Monte Carlo, LHS,
importance

mean value and MPP,
FORM/SORM,

EGRA

polynomial chaos,
stochastic collocation

global/local optim, sampling
global/local evidence
nested

Also see Usage Guidelines in User’s Manual



Using Dakota-generated Data

h

= Users commonly work with the Dakota tabular data file
(dakota_tabular.dat by default)
= |mport tabular data into Excel, Minitab, Matlab, R, SPlus, JMP, Python to
= Generate histogram or other probability plots
= Generate scatterplots to assess variability or see outliers / extreme behavior
= Fit distributions to generated model outputs

= Post-process samples to generate other statistics, e.g., probability of failure,
ANOVA, variance-based decomposition, Sobol indices, safety factors

= Use Dakota results to refine characterization of variables and repeat study

= Decision making considerations
= Consider what form your customers needs the information in to have impact

= Consider engaging a Dakota team member in conversation with analyst and
decision maker

Sandia
National
Laboratories



Method-oriented

BACKUP SLIDES




Generalized Polynomial =

e

Chaos Expansions (PCE) ) e,
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Approximate response with Galerkin projection using multivariate orthogonal
polynomial basis functions defined over standard
random variables

R lIJI} 1
o = St = | RV )

R($) = f(u)

® |ntrusive or non-intrusive

= Wiener-Askey Generalized PCE: optimal basis selection leads to exponential
convergence of statistics

Distribution  Density function Polynomial Weight function  Support range
Normal \/%e =5~ Hermite He,, (x) e [—o0, 0]
Uniform o Legendre P, (x) 1 [—1,1]
—z)” T B . C\c.ﬁ e 6
Beta Qaiéﬂfg(gjljgﬂl) Jacobi P )(3:) (1 —a)*(1+ a)” [—1,1]
Exponential e " Laguerre L, (x) e " [0, o]
Gamma F“"Faif) Generalized Laguerre L )( ) xe " [0, o]

= Can also numerically generate basis orthogonal to empirical data (PDF/histogram)
I —————



Sample Designhs to Form Polynomial Chaos or @

Stochastic Collocation Expansions ) e,

Random sampling: PCE

Expectation (sampling):

— Sample w/i distribution of x
— Compute expected value of
product of R and each Y,

Linear regression
(“point collocation”):
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Tensor-product quadrature: PCE/SC

Tensor product of 1-D integration rules, e.g.,

Gaussian quadrature
B
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Smolyak Sparse Grid: PCE/SC
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Cubature: PCE

Stroud and extensions (Xiu, Cools):
optimal multidimensional
integration rules




Adaptive PCE/SC:
Emphasize Key Dimensions ) i,
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= Judicious choice of new simulation runs

) ) . —<—sc¢ P uniform |
Uniform p-refinement o 56 556 anfoem [

—%— SC 55G adaptive [3

= Stabilize 2-norm of covariance \

. . ot ~LHS 1
Adaptive p-refinement \ 5

0l
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= Estimate main effects/VBD to guide SSG | '\"‘-}TTPQ

h-adaptive: identify important regions

and address discontinuities ] f\%
h/p-adaptive: p for performance; i W P o]
h for robustness A .
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