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Familiarize Yourself with Key Statistics Ideas: 
Moments of Random Variables 

Understanding the following basic concepts will help with Dakota UQ 
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 Concept of a random variable X 
 

 Mean (m, μ): expected or average 
value of X, e.g., mean of sample of 
size N: 
 

 Standard deviation (s, σ): measure 
of dispersion / variability of X: 

realizations of random variables 
with mean μ=100, standard 

deviation σ=10, σ=50 
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In the earlier MEMS application, the 
manufactured edge has a  
mean bias of -0.2 μm, with  
standard deviation 0.08 μm: 

μ 
-0.2 -0.04 -0.12 -0.28 -0.36 

σ σ edge bias  



Familiarize Yourself with Key Statistics Ideas: 
PDFs, CDFs, Intervals 

Understanding the following basic concepts will help with Dakota UQ 
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 Probability density / probability 
mass function: relative likelihood 
of a given value of X 
 

 Cumulative distribution function: 
probability that X will take on a 
value less than or equal to x: 
P(X≤x) 
 

 Interval-valued uncertainty: X can 
take on any value in the interval 
[a,b], but no probability or 
likelihood of one value vs. another 

probability density  
functions 

cumulative  
distribution 
 functions 

probability  
mass function 

For the earlier thermal application, 
a PDF or CDF can answer questions 
about the probability of exceeding a 

critical temperature. 
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Categories of Uncertainty 

This distinction can help in selecting Dakota variable types and method 
 Aleatory (think probability density function, frequency; sufficient data) 

 Inherent variability (e.g., in a population), type-A, stochastic 
 Irreducible: further knowledge won’t help 
 Ideally simulation would incorporate this variability 

 
 Epistemic (e.g., bounded intervals, distribution with uncertain parameters) 

 Subjective, type-B, state of knowledge uncertainty 
 Reducible:  more data or information, would  

make uncertainty estimation more precise 
 Fixed value in simulation, e.g., elastic 

modulus, but not well known for this material 
 

See separate course on motivation for aleatory vs. epistemic uncertainty 
 



Characterizing Uncertainties to Dakota 

 Must characterize each variable’s uncertainty and (optionally) any 
correlation between pairs of variables.  Need not be normal (or uniform)!  

 May require processing data with math/stats tool to fit distributions, 
performing literature searches, or querying experts 
 
 
 
 

Dakota uncertain variable types: 
 Aleatory continuous: normal, lognormal, uniform, loguniform, triangular, 

exponential, beta, gamma, Gumbel, Frechet, Weibull, histogram 
 Aleatory discrete: Poisson, binomial, negative binomial, hypergeometric, 

histogram point (integer, real, string) 
 Epistemic: continuous interval, discrete interval, discrete set 
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normal lognormal Poisson histogram 



Specifying Dakota Uncertain Variables 

 UQ problems are specified to 
Dakota using uncertain variables 
(keywords *_uncertain) 

 Typically generic response 
functions are used 
 

 Thermal UQ example: here is a 
possible Dakota input file fragment 
for the uncertain variable types 
shown on the previous slide 
 

 See the Reference Manual 
variables section for all variable 
types and their parameters 

variables 
  normal_uncertain 1 
    descriptors     'density' 
    means           8.1 
    std_deviations  1.7 
  lognormal_uncertain 1 
    descriptors    'specific_heat' 
    means          2.7 
    error_factors  1.1 
  poisson_uncertain 
    descriptors  'fire_strength' 
    lambdas      1.5 
  histogram_bin_uncertain 1 
    descriptors  'foam_thickness' 
    num_pairs    4 
      abscissas  2.5 3.0 3.5 4.0 
      counts     15  11  20  0 
 
responses 
  response_functions 2 
  descriptors 'pressure' 'temperature' 
  ... 
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https://dakota.sandia.gov/sites/default/files/docs/6.3/html-ref/variables.html
https://dakota.sandia.gov/sites/default/files/docs/6.3/html-ref/variables.html


Stochastic Expansions: 
What Are They? 

 General-purpose UQ methods that build UQ-tailored 
polynomial approximations of the output responses 

 Perform particularly well for smooth model responses 
 Resulting convergence of statistics can be  

considerably faster than sampling methods 
 

 Need to specify the Dakota method: 
 Polynomial Chaos (polynomial_chaos): specify the type of 

orthogonal polynomials and coefficient estimation scheme, 
e.g., sparse grid or linear regression. 

 Stochastic Collocation (stoch_collocation): specify the type of 
polynomial basis and the points at which the response will be 
interpolated; supports piecewise local basis 
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~LHS 

sparse grid 

tensor  
product 
quadrature 



Polynomial Chaos: 
How Does It Work? 

 Uses an orthogonal polynomial basis           , e.g., 
Wiener-Askey basis, with Hermite polynomials 
orthogonal w.r.t. normal density, Legendre 
polynomials orthogonal w.r.t. uniform density 

 Evaluates the model in a strategic way 
(sampling, quadrature, sparse grids, cubature)…  

 …to  efficiently approximate the coefficients of 
an orthogonal polynomial approximation of the 
response 
 
 

 And analytically calculates statistics from the 
approximation instead of approximating the 
statistics with MC samples 
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𝑓𝑓 𝑢𝑢 ≈ 𝑝𝑝 𝑢𝑢 = �𝑐𝑐𝑖𝑖𝜑𝜑𝑖𝑖(𝑢𝑢)
𝑖𝑖

 

𝜑𝜑𝑖𝑖(𝑢𝑢) 

Sparse Grid 

Hermite Polynomials 



Dakota UQ Methods Summary 

character method class problem character variants 
aleatory probabilistic sampling nonsmooth, multimodal, 

modest cost, # variables 
Monte Carlo, LHS, 
importance 

local reliability smooth, unimodal, more 
variables, failure modes 

mean value and MPP, 
FORM/SORM,  

global reliability nonsmooth, multimodal, 
low dimensional 

EGRA 

stochastic expansions nonsmooth, multimodal, 
low dimension 

polynomial chaos, 
stochastic collocation 

epistemic interval estimation simple intervals global/local optim, sampling 
evidence theory belief structures global/local evidence 

both nested UQ mixed aleatory / epistemic nested 

Also see Usage Guidelines in User’s Manual 



Using Dakota-generated Data 

 Users commonly work with the Dakota tabular data file  
(dakota_tabular.dat by default) 

 Import tabular data into Excel, Minitab, Matlab, R, SPlus, JMP, Python to  
 Generate histogram or other probability plots 
 Generate scatterplots to assess variability or see outliers / extreme behavior 
 Fit distributions to generated model outputs 
 Post-process samples to generate other statistics, e.g., probability of failure, 

ANOVA, variance-based decomposition, Sobol indices, safety factors 
 Use Dakota results to refine characterization of variables and repeat study 

 
 Decision making considerations 

 Consider what form your customers needs the information in to have impact 
 Consider engaging a Dakota team member in conversation with analyst and 

decision maker 
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BACKUP SLIDES 
Method-oriented 



 Intrusive or non-intrusive 
 Wiener-Askey Generalized PCE: optimal basis selection leads to exponential 

convergence of statistics 
 
 
 
 
 
 

 Can also numerically generate basis orthogonal to empirical data (PDF/histogram) 
 

Approximate response with Galerkin projection using multivariate orthogonal 
polynomial basis functions defined over standard 
random variables 

 

Generalized Polynomial  
Chaos Expansions (PCE) 

R(ξ) ≈ f(u) 



Sample Designs to Form Polynomial Chaos or 
Stochastic Collocation Expansions  

Random sampling: PCE Tensor-product quadrature: PCE/SC 

Smolyak Sparse Grid: PCE/SC Cubature: PCE 
Stroud and extensions (Xiu, Cools): 
optimal multidimensional  
integration rules 

Expectation (sampling): 
– Sample w/i distribution of x  
– Compute expected value of 

product of R and each Yj 
Linear regression  
(“point collocation”): 

TP
Q

 

S
S

G
 

Tensor product of 1-D integration rules, e.g., 
Gaussian quadrature 



Adaptive PCE/SC: 
Emphasize Key Dimensions 
 Judicious choice of new simulation runs 
 Uniform p-refinement 

 Stabilize 2-norm of covariance 
 Adaptive p-refinement 

 Estimate main effects/VBD to guide 
 h-adaptive: identify important regions 

and address discontinuities 
 h/p-adaptive: p for performance; 

h for robustness 
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Anisotropic index sets Anisotropic Gauss-Hermite  

~LHS 

SSG TPQ 
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